Skip to main content
Log in

A novel cell-based system for evaluating skeletal muscle cell hypertrophy-inducing agents

  • Articles
  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Skeletal muscle is a tissue that adapts to increased use by increasing contractile protein gene expression and ultimately skeletal muscle mass (hypertrophy). To identify hypertrophy-inducing agents that may be potentially useful in the treatment of age-related muscle loss (sarcopenia) and to better understand hypertrophy signal transduction pathways, we have created a skeletal muscle cell-based hypertrophy-responsive system. This system was created by permanently modifying the relatively undifferentiated C2C12 cell line so that it contains the β-myosin heavy chain (β-MHC) gene promoter and enhancer regions fused to a luciferase reporter gene. This cell line responds, by increasing luciferase expression, to a variety of skeletal muscle hypertrophy-inducing agents, including insulin, insulin-like growth factor I, testosterone, and the β-adrenergic receptor agonist isoproterenol, in both the undifferentiated and differentiated states. This cell-based system should be useful for identifying novel hypertrophy-inducing agents as well as understanding hypertrophy signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balagopal, P.; rooyackers, O. E.; Adey, D. B.; Ades, P. A.; Nair, K. S. Effects of aging on in vivo synthesis of skeletal muscle myosin heavy-chain and sarcoplasmic proteins in humans. Am. J. Physiol. 273:E790-E800; 1997.

    PubMed  CAS  Google Scholar 

  • Bhasin, S.; Woodhouse, L.; Storer, T. W. Proof of the effects of testosterone on skeletal muscle. J. Endocrinol. 170:27–38; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Carson, J. A.; Schwartz, R. J.; Booth, F. W. SRF and TEF-1 control of chicken skeletal α-actin gene during slow-muscle hypertrophy. Am. J. Physiol. 270:C1624-C1633; 1996.

    PubMed  CAS  Google Scholar 

  • Carson, J. A.; Yan, Z.; Booth, F. W.; Coleman, M. E.; Schwartz, R. J.; Stump, C. S. Regulation of skeletal α-actin promoter in young chickens during hypertrophy caused by stretch overload. Am. J. Physiol. 268:C918-C924; 1995.

    PubMed  CAS  Google Scholar 

  • Emery, P.W.; Rothwell, N. J.; Stock, M. J.; Winter, P. D. Chronic effects of beta 2-adrenergic agonists on body composition and protein synthesis in the rat. Biosci. Rep. 14:83–91; 1984.

    Article  Google Scholar 

  • Fairfield, W. P.; Treat, M.; Rosenthal, D.I., et al. Effects of testosterone and exercise on muscle leanness in eugonadal men with AIDS wasting. J. Appl. Physiol. 90:2166–2171; 2001.

    PubMed  CAS  Google Scholar 

  • Giger, J. M.; Haddad, F.; Qin, A. X.; Baldwin, K. M. In vivo regulation of the β-myosin heavy chain gene in soleus muscle of suspended and weight-bearing rats. Am. J. Physiol. Cell Physiol. 278:C1153-C1161; 2000.

    PubMed  CAS  Google Scholar 

  • Goldspink, G.; Scutt, A.; Loughna, P. T.; Wells, D. J.; Jaenicke, T.; Gerlach, G. F. Gene expression in skeletal muscle in response to stretch and force generation. Am. J. Physiol. 262:R356-R363; 1992.

    PubMed  CAS  Google Scholar 

  • Ito, H.; Kamei, K.; Iwamoto, I.; Inaguma, Y.; Kato, K. Regulation of the levels of small heat shock proteins during differentiation of C2C12 cells. Exp. Cell Res. 266:213–221; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Jakubiec-Puka, A.; Catani, C.; Carraro, U. Myosin heavy-chain composition in striated muscle after tenotomy. Biochem. J. 282:237–242; 1992.

    PubMed  CAS  Google Scholar 

  • Jakubiec-Puka, A.; Kordowska, J.; Catani, C.; Carrano, U. Myosin heavy chain isoform composition in striated muscle after denervation and self-reinnervation. Eur. J. Biochem. 193:623–628; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Kandarian, S. C.; Schulte, L. M.; Esser, K.A. Age effects on myosin subunit and biochemical alterations with skeletal muscle hypertrophy. J. Appl. Physiol. 72:1934–1939; 1992.

    PubMed  CAS  Google Scholar 

  • McCarthy, J. J.; Fox, A. M.; Tsika, G. L.; Gao, L.; Tsika, R. W. β-MHC transgene expression in suspended and mechanically overloaded/suspended soleus muscle of transgenic mice. Am. J. Physiol. 272: R1552-R1561; 1997.

    PubMed  CAS  Google Scholar 

  • Morley, J. E.; Baumgartner, R. N.; Roubenoff, R.; Mayer, J.; Nair, K. S. Sarcopenia. J. Lab Clin. Med. 137:231–243; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Mozdziak, P. E.; Greaser, M. L.; Schultz, E. Myogenin, MyoD and myosin expression after pharmacologically and surgically induced hypertrophy. J. Appl. Physiol. 84:1359–1364; 1998.

    PubMed  CAS  Google Scholar 

  • Musaro, A.; McCullagh, K.; Paul, A., et al. Localized IGF-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat. Genet. 27:195–200;2001.

    Article  PubMed  CAS  Google Scholar 

  • Rindt, H.; Knotts, S.; Robbins, J. Segregation of cardiac and skeletal muscle-specific regulatory elements of the β-myosin heavy chain gene. Proc. Natl. Acad. Sci. USA 92:1540–1544; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Semsarian, C.; Wu, M.-J.; Ju, Y.-K.; Marciniec, T.; Yeoh, T.; Allen, D. G.; Harvey, R. P.; Graham, R. M. Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signaling pathway. Nature 400:576–580; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Tsika, G. L.; Wiedenman, J. L.; Gao, L.; McCarthy, J. J.; Sheriff-Carter, K.; Rivera-Rivera, I. D.; Tsika, R. W. Induction of β-MHC transgene in overloaded skeletal muscle is not eliminated by mutation of conserved elements. Am. J. Physiol. 271:C690-C699; 1996.

    PubMed  CAS  Google Scholar 

  • Tsika, R. W.; Herrick, R. E.; Baldwin, K. M. Interaction of compensatory overload and hindlimb suspension on myosin isoform expression. J. Appl. Physiol. 62:2180–2186; 1987.

    PubMed  CAS  Google Scholar 

  • Wiedenman, J. L.; Rivera-Rivera, I.; Vyas, D., et al. β-MHC and SMLC1 transgene induction in overloaded skeletal muscle of transgenic mice. Am. J. Physiol. 270:C1111-C1121; 1996a.

    PubMed  CAS  Google Scholar 

  • Wiedenman, J. L.; Tsika, G. L.; Gao, L.; McCarthy, J. J.; Rivera-Rivera, I. D.; Vyas, D.; Sheriff-Carter, K.; Tsika, R. W. Muscle specific and inducible expression of 293 base pair β-myosin heavy chain promoter in transgenic mice. Am. J. Physiol. 271: R688-R695; 1996b.

    PubMed  CAS  Google Scholar 

  • Zhou, W.; Kornegay, E. T.; Storrie, B. A microplate-based bioassay system for measuring porcine serum mitogenic activity. J. Anim. Sci. 72:2378–2384; 1994.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Isfort.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cross-Doersen, D., Isfort, R.J. A novel cell-based system for evaluating skeletal muscle cell hypertrophy-inducing agents. In Vitro Cell.Dev.Biol.-Animal 39, 407–412 (2003). https://doi.org/10.1290/1543-706X(2003)039<0407:ANCSFE>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1543-706X(2003)039<0407:ANCSFE>2.0.CO;2

Key words

Navigation